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Introduction

The Canadian economy is characterized by its resilience and diversity, and key economic
indicators such as the Housing Price Index (HPI), Consumer Price Index (CPI), and energy
prices play pivotal roles in shaping its trajectory. This survey paper embarks on a
comprehensive exploration of time series analysis specific to Canada, focusing on HPI, CPI,
and energy prices. It serves as a valuable resource for those seeking to comprehend the
dynamics of housing prices in the Canadian context.

The motivation behind this paper stems from the growing importance of HPI, CPI, and
energy prices in the Canadian economic landscape. These indicators wield significant
influence over the financial well-being of Canadians, impacting decisions made by
individuals, businesses, and policymakers alike. The need for a comprehensive
understanding of the time series data associated with these factors becomes increasingly
evident.

This paper follows a structured approach, offering a step-by-step guide to unravel the
intricacies of time series analysis. Beginning with fundamental concepts, it navigates
through the core principles of time series, elucidating vital components such as
stationarity, seasonality, and trend analysis.

Furthermore, the paper conducts a deep-dive into the unique characteristics of Canadian
HPI, CPI, and energy price time series data. By analyzing historical trends, patterns, and
correlations within these datasets, it provides valuable insights into their economic
significance within the Canadian context.

In summary, this survey paper acts as an educational tool and reference guide tailored to
those interested in analyzing HPI, CPI, and energy price time series data specific to Canada.
By combining foundational time series analysis principles with real-world insights into the
Canadian economy, we endeavor to equip readers with the knowledge and tools needed to
navigate the dynamic realm of Canadian housing price analysis.



Basic Terminologies

What is the House Price Index?

The Housing Price Index (HPI) is a statistical measure that tracks changes in the prices of
residential properties over time. It provides insights into the trends and fluctuations in the
real estate market, specifically in the prices of homes or properties. HPI is an essential
economic indicator used by individuals, businesses, and policymakers to gauge the health
and stability of the housing sector.

Toronto, Ontario Monthly HPI (1981-2023)
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Figure 1: Toronto House Price Index Monthly

Calculations:

1. Selection of a Reference Period: A base period is chosen as a reference point for
comparison. This is usually a specific month or quarter, and its HPI value is set to
100.

2. Selection of a Sample of Properties: A representative sample of residential
properties is selected. These properties should reflect the diversity of the housing
market in terms of location, size, type (e.g., single-family homes, apartments), and
other relevant characteristics.

3. Data Collection: Data on the selling prices of these selected properties are collected
at regular intervals (e.g., monthly or quarterly) over time.



4. Calculation of Price Changes: The price changes for each property are calculated by
comparing their selling prices in the current period to their prices in the base
period. This calculation is typically done using a formula like the Laspeyres index:

P
HPI = —-x 100%

0
Where:

e HPIlis the Housing Price Index for the current period.
e Pis the aggregate price of properties in the current period.

e P isthe aggregate price of properties in the base period.

What is the Consumer Price Index?

The Consumer Price Index (CPI) is a widely used economic indicator that measures the
average change in prices paid by consumers for a basket of goods and services over time. It
reflects the rate of inflation and is a crucial tool for assessing changes in the cost of living
for households.

Toronto, Ontario Monthly CPI (1990-2023)
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Figure 2: Toronto Consumer Price Index Monthly

1. Selection of a Basket of Goods and Services: A representative basket of goods and
services is selected to reflect the typical consumption patterns of an average



consumer or household. This basket includes items such as food, clothing, housing,
transportation, healthcare, and more.

2. Data Collection: The prices of the items in the basket are collected regularly (e.g.,
monthly) from various outlets, stores, or providers.

3. Calculation of Price Changes: The percentage change in prices for each item in the
basket is calculated by comparing its current price to its price in the base period.
This is typically done using the Laspeyres formula:

XP xW

_ t 0
CPI = 55 X 100%

Where:
e (Pl isthe Consumer Price Index for the current period.
e P isthe price of each item in the current period.

P is the price of each item in the base period.

W, is the weight of each item in the base period (reflecting its importance in the

consumer's budget).

What is Energy Price?

Energy prices encompass the costs of various energy forms such as oil, natural gas,
electricity, coal, and renewables, and their fluctuations are pivotal in shaping a nation's
economic landscape. A stable and reasonable energy price propels industries, fuels
transportation, and supports household energy needs, essentially acting as a catalyst for
economic growth. On the flip side, unforeseen escalations in energy prices can dampen
economic growth, as industries and consumers adjust their spending due to increased
operational and living costs. Moreover, the trade dynamics of a nation are also intricately
tied to energy prices. For instance, countries abundant in energy resources, like Canada,
see their trade revenues soar with a rise in global energy prices, while those reliant on
imports can experience a strain on trade balances. Furthermore, the energy sector's health
directly impacts job markets, investments, and fiscal policies. In essence, energy prices
serve as a barometer for a nation's economic health, reflecting the interplay of global
demand-supply chains, geopolitical events, and internal policy decisions.



Energy Price

Toronto, Ontario Energy Prices (1990-2023)
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Time Series Preparation

We can see that HPI and CPI are time series and the following paper goes through a brief
method on processing this data for time series analysis. More specifically, we will be
focusing on Granger Causation, Seasonal Decomposition, Modeling and Forecasting.

Dataset

The dataset was sourced from the Statistics Canada website
https://www150.statcan.gc.ca/n1/en/type/data?MM=1, combining data from three distinct
categories into a consolidated dataset. Specifically, the Consumer Price Index (CPI) data was
extracted from the following repository:

https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000413, which encompasses
CPI records spanning from 1918 to 2023. Users have the option to select a reference period
for establishing the base. In the example provided, the period was truncated to cover the
years from 1990 to 2023.

Similarly, the Housing Price Index (HPI) data was obtained from
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810020501 and includes data from
1981 to 2023. Here too, users can specify a reference period for the HPI dataset.

Additionally, energy prices data were sourced from
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000101, spanning from 1979 to
2023. For the purpose of the illustration, the time frame was reduced to encompass the
years from 1990 to 2023.

Preprocessing

1. Dropping Irrelevant Columns:
Irrelevant columns are removed from each DataFrame containing HPI, CPI, and
energy price data. These columns include information such as unique identifiers
(DGUID), units of measurement (UoM), and other metadata that are not needed for
the analysis.

2. Formatting Date:
The "REF DATE" column in each DataFrame is converted to a datetime format using
the pd.to_datetime() function. This ensures that the date information isin a
standardized format for further analysis.

3. Filtering Data:
Additional filtering is applied to each DataFrame:


https://www150.statcan.gc.ca/n1/en/type/data?MM=1
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000413
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000413
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000413
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810020501
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000101
https://www150.statcan.gc.ca/t1/tbl1/en/tv.action?pid=1810000101

a. Inthe HPI DataFrame, only rows where the "New housing price indexes'
column is "Total (house and land)" are retained. This filters the data to
focus on total housing price indexes.

b. Inthe energy DataFrame, only rows where the "Type of fuel" columnis
"Regular unleaded gasoline at self service filling stations"
are retained. This filters the data to focus on regular unleaded gasoline
prices.

c. Inthe CPI DataFrame, only rows where the "Products and product
groups" columnis "Al1l-items" are retained. This filters the data to focus
on the consumer price index for all items.

4. Date Range Selection:
Further filtering is applied to each DataFrame to select data only from February
1990 onwards. This narrows down the dataset to a specific time period of interest.

5. Merging DataFrames:
Finally, the three DataFrames containing HPI, CPI, and energy price data are merged
into a single DataFrame named merged_data using the "REF DATE" column as the
common key. Suffixes are added to columns with the same name in the merged
DataFrame to distinguish between the sources of data (HPI, CPI, and energy prices).



Granger Causation

Granger causation is a statistical concept and test used to assess whether one time series
can predict another time series. It is named after Clive Granger, a Nobel laureate in
economics, who developed the concept in the context of econometrics. Granger causality
helps us understand the potential causal relationship between two time series variables.

Here are the key points to understand about Granger causation:

1.

Causation vs. Correlation:

Granger causation does not imply a cause-and-effect relationship in the traditional
sense of causation. Instead, it explores whether one time series contains
information that can help predict another time series. It deals with statistical
causality, not necessarily a true underlying cause.

Lagged Variables:

Granger causation relies on the concept of lagged variables. In a time series, you can
examine whether the past values of one variable (the potential cause) can help
predict the future values of another variable (the potential effect).

Null Hypothesis:

The Granger causality test involves formulating a null hypothesis (HO) that there is
no causal relationship between the two time series. In other words, the past values
of one series do not contain information that helps predict the future values of the
other series.

Statistical Test:

To test for Granger causation, statistical tests are performed. These tests involve
estimating autoregressive models (AR models) for each of the two time series, one
with and one without lagged values of the potential cause variable. The
improvement in prediction accuracy with the inclusion of lagged values is used to
determine causality.

Interpretation:

If the inclusion of lagged values of the potential cause variable significantly improves
the prediction of the potential effect variable, the null hypothesis is rejected. This
suggests that there is evidence of Granger causality, indicating that the potential
cause variable has predictive power for the potential effect variable.

Granger causality is a valuable tool for exploring relationships between time series
variables and has applications in fields such as economic forecasting, finance (e.g., stock
price prediction), and climate science (e.g., climate variables influencing each other). It is
important to note that while Granger causality can detect statistical relationships, it does
not establish a true causal mechanism or imply causation in a broader sense. To ensure
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that Granger causality tests provide meaningful and accurate results, it is essential to verify
that the time series data involved are stationary. This typically involves checking for
stationarity through statistical tests and, if needed, applying transformations like
differencing to make the data stationary. Only then can you confidently proceed with
Granger causality analysis to investigate potential causal relationships between the time
series variables.

Stationarity

The Augmented Dickey-Fuller (ADF) test is used to assess whether a time series is
stationary by examining the presence of unit roots, which indicate non-stationarity. The
test involves estimating an autoregressive model of the time series and then evaluating
whether the coefficient of the lagged first difference (representing the impact of previous
periods on the current value) is significantly different from zero. If the coefficient is
significantly different from zero, indicating that differencing the series removes the unit
root, the series is considered stationary. Conversely, if the coefficient is not significantly
different from zero, suggesting the presence of a unit root, the series is non-stationary. The
ADF test is valuable in time series analysis for ensuring that the data's statistical properties,
such as mean and variance, do not change over time, which is a fundamental assumption
in many time series models and analyses. We use the function adfuller from
statsmodel.tsa.statstools. First, we will conduct the stationarity check on one of the
time series and explain each element in detail.

1 sts.adfuller{merged_df.VALUE_HPI)

0.1s

(09.14562956601923868,

0.9690418522799915,

9,

266,

{'1%': -3.455175292841607,
'5%': -2.8724677563219485,
'10%': -2.57259315846006},

-229,99219849316398)

Figure 3: Augmented Dickey-Fuller Non-Stationary Demonstration

The null hypothesis of the ADF test is that the time series has a unit root, which means it is
non-stationary. In simpler terms, it assumes that the time series exhibits a stochastic trend
and is not stationary. The alternative hypothesis (H1) is that the time series is stationary,
meaning it does not have a unit root.
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The first value in the figure above indicates the T statistic. Conveniently enough, Python
also provides us with the 1%, 5% and 10% critical values from the Dickey-fuller test. Having
all three comes in handy because we might use any of them as levels of significance in our
analysis. Furthermore, you can notice that the T statistic is greater than each of the critical
values. So in this case, we do not find enough evidence for stationarity in this dataset.

The second value is associated with the P Value. P Value indicates the percentage of not
rejecting the null hypothesis. In this case there is a 96% chance of not rejecting the null
hypothesis. This indicates that it is extremely likely that the time series is non-stationary.

The third line indicates the number of lags used in the regression when determining the t
statistic. In this case it is 9 that means there is some autocorrelation going back 9 periods.

The fourth line indicates the number of observations used in the analysis which depends
on the number of lags. The two of these sum up to the total number of observations in the
time series.

The last line is the maximized information criteria provided that there is some apparent
autocorrelation. The lower the value, the easier it is to predict the future data.

Non Stationary to Stationary

There are a lot of methods to convert non-stationary data to stationary data: Differencing,
Log Transformation, Detrending, Seasonal Decomposition, Box-Cox transformation,
Deseasonalization. For the purpose of this paper, we will be going through the most basic
version which is differencing. To perform this transformation we subtract the current value
in the period with the previous period. This method calculates the difference between
consecutive observations. It is useful when you have a time series with a clear trend, and
differencing helps remove the trend component. Performing ADFuller test on this
transformed series gives us this result:

12



1 sts.adfuller(hpi_series_diff)

0.0s

(-3.389854412688381,
9.011309634739783988,
8,

{'1%': -3.4551752928416@7,
'5%': -2.8724677563219485,
'10%': -2.57259315846006},

-230.17014789998717)

Figure 4: Augmented Dickey-Fuller Stationary Demonstration

We can clearly see here that the T statistic is less than 1% critical value and the P value is
1.1% which means it is now almost certain that the series is non-stationary.

In order to interpret the results of Granger Causality, we will list down the p-value along
with the null hypothesis and explain them in relation with the time series.

The SSR (Sum of Squared Residuals) based F-test, also known as the Error Reduction Ratio
F-test, is a statistical test used in the context of Granger causality testing and time series
analysis. It assesses whether adding lagged values of a potential cause variable (or
variables) to a regression model significantly reduces the sum of squared residuals
compared to a model without those lagged values. In other words, it evaluates whether
including past values of a variable improves the prediction of the dependent variable.

The p-value associated with the F-statistic indicates the probability of obtaining the
observed F-statistic value under the null hypothesis (HO). A low p-value (typically below a
significance level like 0.05) suggests that there is strong evidence against the null
hypothesis, indicating Granger causality.

The following table summarizes the result of granger causality with the associated p value
for SSR based F-test, SSR based chi2 test, Likelihood ratio test, Parameter based F-test.

13



Cause
HPI
HPI
CPI

CPI
Energy
Energy

Effect
CPI
Energy
HPI
Energy
HPI
CPI

SSR F test
0.0026
0.0048
0.1569
0.1825
0.9202
0.0018

SSR chi2 test
0.0015
0.0029
0.1352
0.1592
0.9138
0.0009

LLR test
0.0020
0.0037
0.1415
0.1658
0.9143
0.0013

Table 1: Granger Causality P Value for 5 Lags

Param F test
0.0026
0.0048
0.1569
0.1825
0.9202
0.0018

From these results we can deduce some results on potential causes and their effect. For
Example HPI being a cause for CPl and Energy is quite likely because the P Value is lowe
than 1% (Significant Value). If our P Value is low then we are able to reject the null
hypothesis and HPI does indeed granger cause CPl and Energy Prices. However, we can see
that CPI does not cause any change to HPI or Energy which is quite intuitive since CPl is the
one which is actually calculated from Energy Prices. Lastly we can see that Energy Prices do
not cause any change to HPI since P Value is quite large while it does affect CPI since in
principle, Energy price constitutes the formula for calculating CPI.

14



Seasonality

The seasonal decompose function from the statsmodels.tsa module in Python
typically generates four figures when decomposing a time series:

Original Time Series:
The first figure displays the original time series data as it is without any decomposition. This
plot provides a visual representation of the raw data, including any underlying trends,
seasonality, and noise.

Trend Component:

The second figure shows the trend component extracted from the original time series. The
trend represents the long-term movement or underlying pattern in the data, abstracting
away shorter-term fluctuations and seasonal effects.

Seasonal Component:

The third figure illustrates the seasonal component of the time series. This component
captures periodic patterns or seasonal variations that repeat at regular intervals within the
data, such as daily, weekly, or yearly cycles.

Residuals (or Remainder):

The fourth figure displays the residuals, also known as the remainder or error component.
These residuals represent the unexplained variation in the data after removing the trend
and seasonal components. Residuals are essentially the noise or random fluctuations in the
time series.

Each of these four figures provides valuable insights into the decomposition of the time
series, allowing you to visually assess the presence of trends, seasonality, and any
remaining patterns or irregularities in the data. This decomposition is useful for further
analysis, forecasting, and modeling as it helps isolate and understand the underlying
components of the time series.
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Figure 5: Seasonal Decomposition for HPI
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Figure 6: Seasonal Decomposition for CPI
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Figure 7: Seasonal Decomposition for Energy Prices

Analysis

The House Price Index in Toronto has experienced a general increase from 1990 to 2023,
with a notably rapid growth between 2010 and 2020. There's a clear seasonal pattern in
house prices, indicating certain times in the year when prices typically rise or fall. The
residuals, although centered around zero, have occasional spikes indicating unaccounted
events or anomalies in the data.

The Consumer Price Index in this dataset has shown a steady increase over the years from
1990 to 2023. There's a clear seasonal pattern that repeats yearly, suggesting some regular
annual economic influences. The residuals suggest some early variance, stabilization, and
then an increase in anomalies or unexpected events in recent years.

The energy prices remained relatively stable for a long period but started rising around
2015. This upward trend, combined with the clear seasonal patterns and increased
residuals' volatility, indicates a more complex and dynamic energy market in recent years.

17



Autocorrelation

Autocorrelation
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Figure 8: HPI Autocorrelation

The autocorrelation starts near 1 at lag 0, which is expected since a series is perfectly
correlated with itself. It gradually decreases but remains positive and significant for all 40
lags. This indicates a strong positive autocorrelation, suggesting a slow decay or trend in
the HPI time series. The persistently high autocorrelation indicates that HPI values from
several previous periods (lags) could be useful predictors for future values.

Autocorrelation
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Figure 9: CPI Autocorrelation

Just like HPI, the CPI autocorrelation starts near 1 at lag 0. It also gradually decreases, but
the decay seems to be a bit faster compared to HPI. Still, it remains positive and
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significant for a majority of the 40 lags. This indicates a strong positive autocorrelation,

though slightly weaker than that of HPI. This suggests that while previous values of CPI

are useful predictors, they might become less influential as the lag increases, especially
when compared to HPI.

Autocorrelation
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Figure 10: Energy Prices Autocorrelation

The autocorrelation pattern for Energy Prices appears similar to that of CPI, starting near
1 at lag 0 and gradually decreasing. The decay is somewhat steeper than HPI but is
roughly in line with the CPI's decay pattern. This indicates that the autocorrelation is
positive and strong, but not as persistent as HPI's. It suggests that while past values of
Energy Prices can be predictors, their influence wanes a bit more rapidly than HPI.
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Partial Autocorrelation

Partial autocorrelation plots (PACF) are similar to autocorrelation plots (ACF), but they show
the correlation of a time series with its own lagged values, controlling for the values of the
time series at all shorter lags. It helps in determining the order of an autoregressive (AR)
term in a time series model.

Partial Autocorrelation
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o 5 10 15 20 25 30 i5 40

Figure 11: HPI Partial Autocorrelation

At lag 0, we see a value of 1, which is expected since any time series is perfectly
correlated with itself. The significant spike at lag 1 indicates that the value of HPI has a
strong correlation with its immediate previous value, after adjusting for other lags. For
lags beyond 1, the partial autocorrelation values hover around zero and remain within
the confidence bounds (the shaded region). This suggests that, once the immediate
previous value (lag 1) is accounted for, the values of HPI at other lags don't provide much
additional explanatory power.
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Partial Autocorrelation
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Figure 12: CPI Partial Autocorrelation

As with HPI, the PACF for CPI starts with a value of 1 at lag 0. There's a notable spike at
lag 1, signifying a strong correlation of the CPI value with its previous value, after
adjusting for the influence of other lags. Beyond lag 1, the partial autocorrelation values
for CPI also fluctuate around zero and stay within the confidence bounds. This indicates
that, once we account for the immediate previous value (lag 1), the other lagged values
don't offer much more information for explaining the variation in CPI.
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Figure 13: Energy Prices Partial Autocorrelation

At lag 0, the PACF value is 1, as expected since any series is perfectly correlated with
itself. There's a significant spike at lag 1, indicating a strong correlation between the
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current value of Energy Prices and its immediate previous value, after controlling for
other lags. Beyond lag 1, the PACF values fluctuate around zero. Although some values lie
slightly outside the confidence bounds (shaded region), they aren't particularly

prominent or consistent enough to suggest a strong partial autocorrelation at higher
lags.
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Modeling and Forecasting

Modeling

We know that HPI and Energy Prices contain information to predict CPI prices. That is, past
values of HPI and Energy prices influence the value of CPI along with its own lagged values.
So we will use this information to postulate a model to forecast values of CPI. In order to do
this we use the auto arima function. auto arima is a function from the pmdarima
library, designed to automatically discover the optimal order for an ARIMA model. ARIMA
stands for AutoRegressive Integrated Moving Average. The function performs a grid search
over multiple combinations of p, d, g (for ARIMA) and P, D, ¢ (for seasonal
components) parameters, and returns the best ARIMA model according to the provided
criteria (like AIC, BIC, etc.). In this process we use the data from 1990 to 2020 for training
the model and from 2020 onwards to test model accuracy.

Component of ARIMA

AR (Autoregression): Denoted by the parameter p.
It refers to the use of past values in the regression equation for the time series. The
premise being that past values have an effect on current values.

I (Integrated): Denoted by the parameter d.

Represents the number of differences needed to make the time series stationary (i.e., data
values are not a function of time). A stationary time series' properties do not depend on the
time at which the series is observed.

MA (Moving Average): Denoted by the parameter q.

Uses past forecast errors in a regression-like model. It means that the regression error is
actually a linear combination of error terms whose values occurred both in the current and
at various times in the past.

Exogenous Variables

Exogenous variables are external variables that aren't a part of the time series itself but
might have an influence on its behavior. In the code you've provided, VALUE HPI (House
Price Index) and VALUE ENERGY (Energy Prices) are treated as exogenous variables to the
VALUE_CPI series.
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SARIMAX Results
Dep. Variable: y MNo. Observations: 359

Model: SARIMAX(0O, 1, 0)x(1, 0, [1], 12) Log Likelihood -152.801
Date: Tue, 31 Oct 2023 AlC  313.602
Time: 17:12:47 BIC 329.125
Sample: 02-01-1990 HQIC  319.776
- 12-01-2019
Covariance Type: opg
coef stderr z P=|z| [0.025
intercept 0.0096 0.008 1.250 0.2171 -0.005
ar.5..12 0.9460 0.038 24.847 0.000 0.87
ma.S.L12 -0.7916 0.067 -11.814 0.000 -0.923
sigma2 0.1353 0.009 14745 0.000 0.117
Ljung-Box (L1) (Q): 0.15 Jarque-Bera (JB): 5.75
Prob(Q): 0.70 Prob(JB): 0.06
Heteroskedasticity (H): 2.28 Skew: 0.05
Prob(H) (two-sided): 0.00 Kurtosis: 3.61

Figure 14: Best Model Summary Sample

We can observe in the above model that the order is (0,1,0) meaning that AR order (p): O,
Differencing order (d): 1, MA order (g): 0. Seasonal AR order (P): 0, Seasonal Differencing
order (D): 1, Seasonal MA order (Q): 1, Seasonal frequency (m): 12. We set the seasonal
frequency to 12 because we observed in the seasonal decomposition that there was a
cyclical pattern every year.
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Forecasting

CPI Value

Comparison of Predicted and Actual CPI

= Predicted CPI

160 —— Actual CPI
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Date

Figure 15: Comparison of Predicted CPl incorporating a Seasonal Trend of 12 Month VS Actual CPI

After plotting the forecasting CPI predictions with Actual CPI from January 2020 to August
2023 we can see that the trend for Predicted CPI greatly resembles the Actual CPI. The
predictions do not precisely match the Actual CPi because of the current unprecedented
economical situation of the country. Now lets try the same model but while incorporating
seasonality from the last 6 periods inst

CPI Value

Comparison of Predicted and Actual CPI with seasonality trend of 6 Periods

Predicted CPI
160 —— Actual CPI

155

150

145

140
Jan 2020 Jul 2020 Jan 2021 Jul 2021 Jan 2022 Jul 2022 Jan 2023 Jul 2023
Date

Figure 16: Comparison of Predicted CPl incorporating a Seasonal Trend of 6 Month VS Actual CPI
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Here we can see that the predicted line is almost exactly the same as the one with
seasonality trends recurring in 12 months. However, if we take a closer look by carefully
analyzing the Mean Squared Errors. The MSE of 12 Period Season Prediction is 33.2416
while MSE of 6 Period Season Prediction is 34.0867 which is quite similar but confirms
that MSE of 12 Period Season Prediction is better.

We can also inspect some more Auto ARIMA Models to make sure that our 12 Period
Seasonal Model is the best model by inspecting the MSE of each of them. We keep the
same exogenous variables for each test and record results.

Seasonal Trend Order (p, d, q, P, D, Q) Mean Squared Error
16 (0,1,0,2,0,1) 42.20
12 (0,1,0,1,0,1) 33.24
6 (0,1,0,2,0,2) 34.08
4 (3,1,1,1,0,1) 38.14
3 (0,1,0,2,0,2) 46.38

Table 2: MSE for Forecasting Models

From the table we can confirm that using the fact that there is a cyclical pattern during the
last 12 months we can postulate a model that can help us forecast the CPI values. Since the
P and Q in this model is 1 means that the model takes into account the lag from exactly 12
periods (1 year) while considering the Autoregressive order and the Moving Average.
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Neural Networks

Neural networks form the bedrock of modern artificial intelligence (Al) and machine
learning. Inspired by the biological neural networks in human brains, these computational
models are designed to recognize patterns and solve complex problems. A typical neural
network comprises layers of interconnected nodes or neurons, each processing input data
and forwarding the output to subsequent layers. Through training, neural networks adjust
their internal parameters, enabling them to interpret and respond to diverse data inputs
effectively. These models have been pivotal in advancements across various fields,
including image and speech recognition, natural language processing (NLP), and complex
decision-making.

Evolution to Transformers

Transformers, introduced in the groundbreaking paper "Attention Is All You Need" in 2017,
mark a significant evolution in neural network architecture. Traditional neural network
designs, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks
(RNNs), have limitations—CNNs are less suited for sequential data, and RNNs struggle with
long-range dependencies. Transformers overcome these challenges with a unique
structure based on 'self-attention'. This mechanism allows the network to process entire
sequences of data in parallel, significantly improving efficiency and effectiveness in
handling sequential data. Transformers can weigh the significance of different parts of the
input, focusing on relevant segments for tasks like translation or summarization.

Output
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Transformers in Natural Language Processing

In NLP, transformers have revolutionized the field. Unlike RNNs that process text
sequentially, transformers view an entire sequence at once, capturing intricate
dependencies irrespective of distance within the sequence. This capability has led to
state-of-the-art performance in language translation, text generation, and sentiment
analysis. Models like OpenAl's GPT series and Google's BERT are based on transformer
architecture, demonstrating exceptional proficiency in understanding and generating
human language.

grew a pretty little fir-tree; and yet it was not happy

"Rejoice with us," said the air and the sunlight. Enjoy

The sun shone, and the soft air fluttered its leaves

Tokenization

v

(grow |[= | [rotty |1t | o |[troe | amat |[ v |1 ] was |t |[ ey |

(refoce |[witrus | i | e ] | [ana ] e | st vy

(tre | ][ shone | [ana ][ |[ ot |[ | teret | |[1saves

Transformers for Forecasting

Beyond NLP, transformers have shown promise in forecasting, a domain traditionally
dominated by time-series models. Forecasting involves predicting future values based on
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past data, which is inherently sequential. Transformers can be adapted for forecasting by
treating time-stamped data as a sequence, similar to words in a sentence. This allows the
model to capture temporal dependencies, a crucial factor in accurate forecasting. For
example, in stock market prediction, a transformer can learn complex patterns in historical
price data, considering both short-term fluctuations and long-term trends. Similarly, in
weather forecasting, transformers can process vast arrays of historical weather data,
identifying patterns that traditional models might miss.

Fix-length time window

Time

Analogy: Transformers in Language and Forecasting

To understand how transformers apply to forecasting, consider an analogy with language
processing. In language, especially in tasks like text generation, a transformer model
predicts the next word in a sentence based on the context provided by previous words.
This is similar to forecasting, where future data points are predicted based on past data.

Language Prediction: Setting the Scene

Imagine a transformer working on a sentence completion task. Given the beginning of a
sentence, the model predicts the next word by considering the context—each word that
has come before. It understands not just the immediate predecessor but the entire
sequence, capturing nuances and dependencies that influence what word comes next. For
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instance, in the sentence "The weather today is...", a transformer, analyzing past words,
might predict "sunny" or "rainy" as the next word.

Forecasting: Parallel in Time

Now, apply this concept to forecasting. Instead of words, the sequence consists of historical
data points. Let's say we're predicting stock prices. The transformer looks at past prices in a
manner akin to how it examines previous words in a sentence. Just as it understands that
certain words are more likely to follow others, it recognizes patterns in how stock prices
evolve over time. It acknowledges that today's price isn't just a function of yesterday's but a
culmination of a trend over many days, weeks, or even months.

The Role of Self-Attention

The key to this capability is the transformer's self-attention mechanism. In language, it
allows the model to weigh the importance of each preceding word in predicting the next. In
forecasting, this translates to understanding which past data points (e.g., stock prices from
specific days) are most influential in predicting the future. The transformer can thus make
informed predictions by considering both recent events and long-term trends.

TimeGPT is a generative pre-trained model specifically designed for forecasting time
series data. This model functions by using historical values of the time series and
exogenous variables (external factors that might influence the time series) as inputs to
make predictions. TimeGPT is versatile and can be applied to a wide range of tasks,
including but not limited to demand forecasting, anomaly detection, and financial
forecasting.

TimeGPT

The working principle of TimeGPT is analogous to how humans read a sentence, processing
the data from left to right. It analyzes a window of past observations from your time series,
treating each data point as a "token." Just as in natural language processing, where each
word (or token) contributes to the understanding of a sentence, each data pointin
TimeGPT contributes to the understanding of the time series pattern. TimeGPT leverages
these temporal patterns, which it has learned during training on vast datasets, to make
accurate forecasts.

The TimeGPT API provides a user-friendly interface to this model, allowing you to harness
its forecasting capabilities. Through this API, you can forecast future events and engage in
various time series-related tasks. This includes exploring what-if scenarios, detecting
anomalies in your data, and other applications where understanding future trends based
on historical data is crucial.
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To use TimeGPT for forecasting, you typically would:

e Prepare Your Data: Format your time series data and any relevant exogenous
variables.
Access T- API: Utilize the TimeGPT API to input your data into the model.

Model Training/Loading: Depending on your setup, either train the model with your
data or use the pre-trained model.

e Forecasting: Use the model to predict future data points based on the historical data
you provided.

e Interpret Results: Analyze the forecasts generated by TimeGPT to make informed
decisions or gain insights into future trends.

TimeGPT's advanced approach to time series analysis makes it a powerful tool for scenarios
where understanding and predicting temporal data patterns are essential
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Conclusion

The trajectory of the CPI from January 2020 to July 2023 suggests a significant relationship
between it and the HPI, with the latter seemingly offering valuable insights for forecasting
CPI values. One reason for this one-sided predictive power could be the nature and
structure of the housing market in relation to the broader economy. Housing prices,
encapsulated within the HPI, are a reflection of a myriad of macroeconomic variables such
as interest rates, employment rates, and broader economic sentiment. A rise in the HPI
could suggest increased consumer confidence, higher employment rates, and possibly even
easy lending conditions set by the central bank, all of which have direct implications for the
CPI. This makes the HPI a comprehensive and leading indicator in forecasting the CPI.

On the other hand, the CPI, being a broader measure, includes a vast range of goods and
services and may not necessarily provide specific insights into the housing market. Simply
put, while the price of a loaf of bread might increase due to inflation, it doesn't directly
correlate to a surge in property values.

Similarly, the choice of using energy prices as exogenous variables to predict the CPI is
grounded in logic. Canada, as a significant exporter of energy resources, sees its domestic
economy intricately linked to global energy market fluctuations. Rising global energy prices
could mean increased national revenues from energy exports, but it also implies higher
domestic fuel and heating costs, directly impacting the CPI. The rationale behind not using
CPI to forecast energy prices is clear: while the cost of various goods and services might
change, they don't necessarily have a direct bearing on global energy demand and supply
dynamics.

In essence, while the CPI captures the average price changes in goods and services, factors
such as the HPI and energy prices play a foundational role in its movement. Their
prominence in the Canadian economic structure makes them more explanatory in nature
for CPI fluctuations, rather than the other way around
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